一文速懂W3bstream:专门针对DePIN的L2 Rollup
作者:IoTeXFoundation,翻译:xiaozou
最近,DePIN进入加密主流,带来了一些问题和挑战,例如去中心化、可扩展性、可验证性、身份验证管理和数据信任等。本文将深入探讨其中一些问题,以及IoTeX核心团队通过其产品W3bstream提供的几个解决方案,W3bsteam是一种以rollup为中心的用于链下数据计算的可扩展架构。
1、DePIN提神剂
DePIN(去中心化物理基础设施网络)代表着基于Web2的传统物联网系统的重大转变。一直以来,物联网系统要么以云为中心,源于物理设备的数据通过物联网网关传递到云端进行处理和存储,要么以edge(边缘)为中心,涉及到处理更靠近源的数据的边缘服务器。这些架构虽然在物联网应用中很流行,但本质上是中心化或混合式的。然而,DePIN通过整合三大核心技术——区块链、物联网和代币经济学——引入了一种创新方法。这种整合支持从基层开始创建基础设施网络和机器经济。DePIN的独特之处在于它的社区驱动模式,鼓励为共同利益构建应用程序,而不是由单个公司进行中央部署和维护。
DePIN主要有两类:
物理资源网络(PRN):这类网络专注于位置相关硬件,交付独特的商品或服务。例如无线连接、通过特定区域传感器获取的地理空间情报,以及汽车服务等移动应用。
数字资源网络(DRN):DRN激励可替代资源(如算力、存储或带宽)的硬件部署,支持针对诸如视频/音频渲染或存储服务之类的任务进行大型网络创建,而无需特定于位置的硬件。
DePIN生态丰富多彩,许多初创公司都在进行不同方面的探索,如去中心化计算、存储、带宽网络和通信协议。无论一个项目属于哪一类,DePIN都面临着自身的固有挑战,例如建立系统身份验证、解决隐私问题,尤其是可可扩展性。
2、DePIN可扩展性挑战
如前所述,可扩展性是一个关键挑战,这是由DePIN应用程序的固有特性决定的。DePIN通常包含拥有大量设备的大型网络,生成处理大量数据。同时,与区块链技术的集成虽然提供了强大的信任基础,但也带来了自身局限性。区块链以其高信任度而闻名,但受制于有限的处理能力和高昂的数据存储。这种广泛的网络和数据需求与区块链有限的处理能力的对比,无疑突显出DePIN应用程序面临的可扩展性挑战。
以太坊Rollup方法
以太坊一直采用的解决可扩展性问题的方法就是以rollup为中心的路线图。该策略从根本上是对区块链网络中数据处理和交易执行方式的重新思考。
(1)L2Rollup:以太坊提倡将大部分数据处理和执行卸载到L2Rollup网络,而不是完全依赖L1(主区块链)进行全部的工作。这些网络与主链一起运行,但处理交易的方式更加有效。
(2)批处理交易:L2网络从L1网络收集交易并进行批量处理。通过将多笔交易批量打包,Rollup网络可以比在主链上一个一个单独处理交易更高效地处理交易包。
(3)证明生成和验证:L2网络在批量处理交易后生成证明。此证明是一种加密证据,用于验证Rollup网络中处理的所有交易都是有效的。然后,L1网络通过智能合约验证这一证明。这个过程确保了在L2网络上处理交易的完整性。
(4)L1信任锚:尽管将数据处理卸载到L2网络,但L1区块链保留了其作为核心信任锚的作用。它通过验证来自L2网络的证明来实现这一点,从而维护了整个网络的完整性和安全性。
(5)有效状态转换:L1网络接收这些证明和相应的状态转换,它可以更高效地处理这批交易。这种方法减轻了L1网络的负担,使其能够更有效地发挥信任锚的作用,同时处理更少但更关键的任务。
这种以rollup为中心的方法让以太坊大大增强了可扩展性,稍加调整就可应用于DePIN。
3、W3bstream:专门针对DePIN的L2Rollup
如前所述,以rollup为中心的方法还可用来扩展DePIN应用程序。这种方法是IoTeXW3bstream背后的核心理念,IoTeX的L2网络专门为扩展DePIN项目创建,能够将大量的链下数据压缩(聚合)成更小的、可验证的零知识证明,以触发链上交易。现在让我们来看看这种方法的主要组件:
主权智能设备:这些对于DePIN项目的数据可信度来说至关重要。这些设备部署在现实的物理世界中,不仅可以收集数据,还可以证明数据收集过程的可信度。
数据可用性层:数据可用性层负责临时存储从设备接收到的数据。它既可以是链上的,也可以是链下的,由于其短期性质,它与永久存储不同。
去中心化排序网络(DSN):DSN就从设备收集的数据达成共识,并将其存储在数据可用性层。这种共识对于进行任何有意义的计算来说都是必需的。
去中心化聚合网络:该网络负责计算,从数据可用性层批量检索数据,并为一个或多个设备生成聚合的零知识证明。
L1网络:L1上的智能合约可以作为验证器来验证链下聚合器生成的零知识证明。通过这种方式,L1作为DePIN应用程序的信任基础和结算层。该架构的高层流程图如下:
下面几节将更详细地分析这一架构,从如何收集可信数据开始,然后解释数据预处理和数据可用性,然后再探讨聚合证明生成过程。
(1)可信数据收集
在DePIN应用程序中,可信数据收集是至关重要的,主要通过两种方法实现:基于TEE(可信执行环境)和基于零知识证明(ZKP)。
基于TEE:TEE通过在设备受保护区域隔离数据收集代码来确保安全的数据收集。这种方法还包括远程认证,支持设备操作外部验证和代码完整性。
基于ZKP:此方法使设备能够在不泄露底层数据的情况下证明其数据收集的准确性。它会根据设备性能而有所不同,对于功能强大的设备使用板载ZKP生成,对于更加受限的设备使用远程生成。
TEE和ZKP的结合提高了DePIN应用程序数据收集的可信度,影响了相关金融系统的整体效力。未来的研究将重点在于提高ZKP效率,特别是对于具有多个传感器或复杂数据收集需求的设备。
(2)数据预处理和数据可用性
DePIN架构的第二个主要组成部分是数据预处理和确保数据可用性,由去中心化测序网络支持。该网络为多个DePIN项目提供服务,并解决了设备多样性的挑战,特别是通信协议方面的挑战。
去中心化排序网络:
功能:执行数据预处理。数据来自不同的设备,网络会对数据进行处理,以确保数据的一致性和兼容性。
验证过程:网络中的各节点通过两步验证数据:(1)确认数据收集过程的有效性,可以通过检查支持TEE的设备提供的认证报告,也可以通过验证该设备生成的证明来确认。(2)验证设备签名,确保数据源的真实性。
数据存储和可用性:
预处理后:数据经过预处理并在网络内达成共识后,将存储在特定项目的数据可用性层。
自定义存储解决方案:项目可以灵活选择喜欢的数据可用性层。这是通过可配置存储适配器实现的,支持将数据存储在所选的数据可用性层中。
DePIN架构的这部分在标准化和保护来自不同设备的数据流方面起着关键作用,确保数据得到统一处理和有效存储。
(3)数据证明聚合
DePIN架构的第三个组成部分侧重于聚合证明生成,这是验证DePIN项目计算必不可少的过程。
聚合器节点和计算池:
该网络由聚合器节点构成,这些节点形成了一个链下计算资源池,在所有DePIN项目之间共享。这些节点基于链上状态监视器周期性地选择一个空闲聚合器来处理特定DePIN项目的计算任务。
聚合器节点执行任务:
所选节点从数据可用性层检索数据,然后为DePIN项目执行必要计算并生成证明。该证明被发送到L1智能合约进行验证,之后节点回归空闲状态。
为了生成聚合证明,系统将利用一个分层聚合电路,该电路由以下组件构成:
数据压缩电路:其功能类似于默克尔树,验证所有收集的数据都来自特定的默克尔树根。
签名批量验证电路:批量校验来自设备的数据有效性,每个设备都关联一个签名。
DePIN计算电路:证明DePIN项目的特定计算逻辑(例如验证医疗保健项目中的步数或太阳能发电厂产生的能量)被正确执行。
证明聚合电路:将所有证明聚合为一个证明,供L1智能合约进行最终验证。
数据证明聚合对于确保DePIN项目计算的完整性和可验证性来说至关重要,为验证链下计算和数据处理提供了可靠有效的方法。
4、结论
总之,W3bstream通过其去中心化排序网络高效地管理数据预处理,有助于DePIN的可扩展性。它支持聚合证明生成,这对于验证跨大型网络的复杂计算至关重要。通过促进链下计算并提供针对链上证明验证的强大机制,W3bstream显著提高了DePIN应用程序的吞吐量和效率。虽然W3bstream依赖于IoTeX区块链(由于其速度、安全性和成本效益,IoTeX仍然是新兴DePIN应用程序的完美选择),但它可支持任何区块链上的任何现有DePIN项目。它的架构(支持可扩展的安全基础设施)使其成为更广泛的去中心化网络生态系统中的重要部分。
本站提醒:投资有风险,入市须谨慎,本内容不作为投资理财建议。